4 интерьер животного это

Интерьер животных

Интерьер — это внутреннее строение организма, которое выражено в морфофизиологических, биохимических, иммуногенетических и цитогенетических особенностях.
В XX в. получило развитие новое направление в селекции животных — оценка их потенциальных возможностей по интерьеру. Одним из основоположников нового направления в селекции нашей стране был академик Е. Ф. Лискун. Он установил, что между строением желез и их функциональной деятельностью существует определенная связь.
Так, Е. А. Арзуманян. В. Ф. Красота определили, что в вымени коров с высокой молочной продуктивностью на долю железистой ткани приходится 75—80 %. а на долю соединительной и жировой — 20—25 %. Опытами было подтверждено, что на количество выделенною молока влияет не только относительное, по и абсолютное количество железистой ткани, и поэтому при отборе животных нужно обращать внимание на уклонения в сторону увеличения молочной железы и таким образом сочетать два показателя — абсолютное и относительное количество железистой ткани.
Важным объектом исследований является кровь. Ее роль в жизнедеятельности организма огромна. Изучают элементы крови (эритроциты, лейкоциты), содержание в ней гемоглобина, белка и его фракции, активность ферментов, группы крови и т. д.
Рядом исследователей установлена положительная корреляции между окислительными свойствами крови и интенсивностью роста молодняка. У интенсивно растущих животных в крови больше эритроцитов, выше содержание гемоглобина. Коэффициент корреляции между содержанием гемоглобина и резвостью лошадей чистокровной верховой породы составил 0,66 ± 0,14. Во ВНИИ генетики и разведения животных разработан метод раннего прогнозирования жирномолочности черно-пестрого скота по трем биохимическим показателям крови: общим липидам, нейтральному жиру, уксусной кислоте. Коэффициент корреляции этих показателей и жирномолочности составил от 0,4 до 0,8, в связи с чем эффективность отбора по биохимическим показателям оказалась выше, чем по жирномолочности женских предков.
По ферментам крови можно судить о продуктивных и племенных качествах животных, особенно в раннем возрасте. Ферменты — биологические катализаторы. Они участвуют во всех жизненно важных процессах организма. У животных изучены такие ферменты крови, как амилаза, аланинтрансфераза, фосфатазы и др. По некоторым ферментам можно и раннем возрасте прогнозировать будущую продуктивность и племенную ценность животных. О. К. Смирнов установил, что гомогенный подбор родительских пар по активности ферментов ведет к повышению плодовитости свиноматок и положительно влияет на живую массу поросят в возрасте 1—2 мес, а также увеличивается содержание мышечной ткани в туше. По уровню активности аминотрансфераз в сыворотке крови можно прогнозировать энергию роста и мясную продуктивность свиней.
В настоящее время уделяется внимание изучению групп крови, полиморфизма белкой молока. Группы крови животных служат их генетическим паспортом и не изменяются на протяжении всей жизни. При искусственном осеменении маток важен контроль за достоверностью происхождения потомков. По группам крови можно судить о гомогенности или гетерогенности популяции животных, степени гомозиготности при использовании инбридинга, а также изменениях частоты аллелей при проведении селекционно племенной работы, в первую очередь при разведении по линиям и скрещивании. Селекционеры, используя полиморфизм но группам крови, смогут контролировать изменение генофонда пород, проводить целенаправленный подбор. Имеется большое число научных данных, которые показывают, что гетерогенный подбор по определенным генетическим системам приводит к проявлению гетерозиса.
У свиней, гетерозиготных по некоторым системам групп крови, выше многоплодие, чем у гомозиготных. Гетерозиготные животные па откорме по сравнению с гомозиготными отличались более высокими скороспелостью, мясными качествами и лучшей конверсией корма.
В работах В. Ф. Красоты, Н. М. Костомахина и др. показано, чти эритроцитарные и лейкоцитарные антигены могут использоваться как генетические маркеры при изучении устойчивости или предрасположенности животных к различным заболеваниям.
В стадах холмогорского скота в течение длительного времени изучили устойчивость и предрасположенность коров к маститу по группам крови. Оказалось, что все коровы — носители аллеля О1 отличались высокой восприимчивостью к этому заболеванию, а носители аллелей Е’G’G» и O1Y1I1 — устойчивостью. При наличии
в генотипе данных аллелей проявлялся максимальный эффект. Животные — носители аллелей, повышающих устойчивость к маститу, отличались высокой пожизненной молочной продуктивностью.
В Ф. Красота, Е. К. Меркурьева, Г. Г. Скрипниченко изучали полиморфные системы белков молока и выявили значительную породную вариацию по бета-лактоглобулину, бета- и каппа-казеину. В настоящее время проводится отбор племенных быков по содержанию в молоке их дочерей каппа-казеина. Высококачественные сыры изготавливают из молока коров, которые являются гомозиготами по аллелю В каппа-казеина.
Важным интерьерным показателем у животных служат хромосомы, их полиморфизм, индивидуальные различия, хромосомные перестройки. А. В. Бакай и В. Ф Красота длительно изучали робертсоновские транслокации у крупного рогатого скота и его сородичей. Гак, они первыми в СНГ обнаружили транслокации по первой и 29-й хромосомам (1/29) у зебувидного скота. Установлено отрицательное влияние этих транслокаций на показатели воспроизводства у племенных быков (снижение оплодотворяющей способности спермы) и коров (снижение оплодотворяемости).
Интенсивно развивающиеся в настоящее время ДНК-технологии и ДНК-диагностика позволяют глубже изучать интерьерные особенности сельскохозяйственных животных и быстрее освобождать популяции от генетического брака.
Некоторые исследователи изучали содержание ДНК и РНК и крови коров красной степной породы. Было установлено, что уровень содержания РНК изменяется на протяжении лактации и наивысший уровень РНК отмечен на 2—3-м месяцах лактации, что совпадает с высокими удоями. Связи между содержанием ДНК и уровнем молочной продуктивности не обнаружено.

Источник

Интерьер животных

Смотреть что такое «Интерьер животных» в других словарях:

ИНТЕРЬЕР ЖИВОТНЫХ — внутреннее строение, а также биохимические и физиологические особенности организма сельскохозяйственных животных, связанные с их продуктивностью и племенными качествами. Интерьерные признаки используют для оценки конституции и прогнозирования… … Большой Энциклопедический словарь

интерьер животных — внутреннее строение, а также биохимические и физиологические особенности организма сельскохозяйственных животных, связанные с их продуктивностью и племенными качествами. Интерьерные признаки используют для оценки конституции и прогнозирования… … Энциклопедический словарь

ИНТЕРЬЕР ЖИВОТНЫХ — Совокупность морфологических и физиологических особенностей организма, отражающих конституциональные, продуктивные и племенные качества животных. К интерьерным характеристикам относятся: биохимический анализ крови и животноводческой продукции… … Термины и определения, используемые в селекции, генетике и воспроизводстве сельскохозяйственных животных

ИНТЕРЬЕР ЖИВОТНЫХ — внутр. строение, а также биохим. и физиол. особенности организма с. х. ж ных, связанные с их продуктивностью и плем. качествами. Интерьерные признаки используют для оценки конституции и прогнозирования продуктивности скота и птицы … Естествознание. Энциклопедический словарь

интерьер — а, м. intérieur. 1. устар. Внутренность, внутреннее помещение. Уш. 1934. Особенный успех у публики имела комната баронессы, кабинет Арбенина, комнаты Звездича, роскошный зал и спальня Нины intérieur ы, обставленные своебразной стильной мебелью и… … Исторический словарь галлицизмов русского языка

интерьер — (фр. interieur внутренний) 1) архитектурно и художественно оформленное внутреннее помещение здания; 2) внутреннее строение (анатомическое и гистологическое) органов и тканей, биохимические и физиологические особенности организма с. х. животных,… … Словарь иностранных слов русского языка

интерьер сельскохозяйственных животных — интерьер сельскохозяйственных животных, внутреннее строение (анатомическое и гистологическое) органов и тканей, биохимические и физиологические особенности организма сельскохозяйственных животных, связанные с их продуктивностью и племенными… … Сельское хозяйство. Большой энциклопедический словарь

ИНТЕРЬЕР СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ — внутр. строение (анатомич. и гистол.) органов и тканей, биохим. и физиол. особенности организма с. х. ж ных, связанные с их продуктивностью и плем. качествами. Учение об И. с. ж. составная часть учения о конституции сельскохозяйственных животных … Сельско-хозяйственный энциклопедический словарь

Рослинская капелла — Интерьер Рослинской капеллы Рослинская капелла св. Матфея (Collegiate Church of St Matthew) позднеготическая церковь в Шотландии, в мидлотианской деревне Рослин, строившаяся в середине XV века близ Рослинского замка в качестве усыпальницы… … Википедия

Рослинская часовня — Интерьер Рослинской капеллы. Рослинская капелла св. Матфея (Collegiate Church of St Matthew) позднеготическая церковь в Шотландии, в мидлотианской деревне Рослин, строившаяся в середине XV века близ Рослинского замка в качестве усыпальницы клана … Википедия

Источник

Реферат: Интерьер животных

ГРУППЫ КРОВИ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

ПОЛИМОРФНЫЕ СИСТЕМЫ БЕЛКОВ КРОВИ ЖИВОТНЫХ И ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ИХ В СЕЛЕКЦИИ

ПОЛИМОРФИЗМ БЕЛКОВ КРОВИ И МОЛОКА В СВЯЗИ С УСТОЙЧИВОСТЬЮ КОРОВ К МАСТИТУ

Интерьер животных — это совокупность морфологических и фи зиологических особенностей его организма, выявляемых лабора­ торными методами с целью уточнения оценки конституциональных, продуктивных и племенных качеств. Слово «интерьер» обозначает «внутренний» (франц.).Интерьерные исследования в зоотехнии направлены на поиск и познание стабильных внутренних особен­ностей организма здорового животного, характеризующих их на­следственность и коррелирующих с хозяйственно полезными при­знаками. Это позволяет уточнить их племенную оценку, правиль­нее провести отбор, найти лучшие приемы для выращивания и эксплуатации. Особенно большая роль в учении об интерьере отводится прогнозированию будущей продуктивности животного или его потомства, то есть возможно ранней предварительной егооценке. Экономическая эффективность такого приема бесспорна, особенно при широком применении искусственного осеменения и организации животноводства на промышленной основе.

Изучение интерьера направлено на раскрытие связи между формой и функцией, а также между одной и другой функциями в онтогенезе животного. Оно основывается на генетических и он­тогенетических закономерностях — наследовании и развитии при­знаков. Выбирая показатель для оценки производителя, учитыва­ют, как наследуется этот признак потомством. Однако, рассматри­вая организм как единое целое, было бы ошибкой искать для характеристики того или иного хозяйственно полезного свойства какой-то показатель вне зависимости его от всех других особенно­стей организма. При прогнозировании будущей продуктивности животного изучают, как изменяется избранный для оценки интерьерный показатель с возрастом и под влиянием различных внеш­них факторов — кормления, содержания и эксплуатации.

Изучение молочной железы. В 1907 г. Е. Ф. Лискун провел изу­чение гистологического строения молочной железы у коров разных пород и установил различное соотношение в ней железистой и со­единительной тканей (табл. 1).

Таблица 1Соотношение железистой и соединительной тканей в
молочной железе коровразных пород

На долю деятель­ной ткани прихо­дится всей площади срезов (%)

Средний диаметр альвеол (мик­рон)

На каждые 10 аль­веол этого диаметра приходится эпите­лиальных клеток

Е. Ф. Лискун пришел к выводу, что между строением молочной железы и ее функцией существует определенная связь, заключаю­щаяся в степени развития соединительной ткани и в соотношении ее с железистой тканью, а также с диаметром альвеол. Вымя ко­ров молочных пород содержит железистой ткани больше, чем со­единительной. Но он отметил также, что на структуру молочной железы оказывают влияние возраст животных, период лактации или покоя, порода и тип нервной деятельности. После высказыва­ния А. В. Немилова о биологическом значении соотношения желе­зистой и соединительной ткани в вымени было проведено много ис­следований. В одной из своих работ Е. А. Арзуманян (1957 г.) показал, что оптимальным соотношением железистой и соедини­тельной ткани является 75 : 25. Поскольку соединительная ткань выполняет очень важную опорную, трофическую и защитную роль в процессе молокообразования, то лишь определенное соотношение этих тканей обеспечивает высокую функциональную актив­ность железы.

В последнее десятилетие проведены интересные гистохимические исследования вымени. Так, И. Я. Шиховым установлено, что функциональная активность вымени сочетается с содержанием в его железистой ткани нуклеиновых кислот. Соотношение ДНК и РНК меняется с возрастом, а также с течением лактации. Ко­эффициент корреляции между общим количеством нуклеиновых кислот и молочной продуктивностью составлял 0,881, между ко­личеством РНК и молочностью — 0,716. Однако практическое при­менение установленных закономерностей весьма ограничено. И ги­стологические, и гистохимические исследования молочной железы можно провести главным образом после убоя животного. Поэтому результаты подобных экспериментов, отражающие к тому же функ­циональное состояние молочной железы в момент их проведения, могут быть использованы в основном для характеристики пород, линий, семейств. Применение метода биопсии — прижизненного взятия проб — в данном случае мало приемлемо.

Изучение кожи. Основываясь на филогенетическом родстве молочных желез с потовыми, А. В. Немилов (1915, 1927) предпо­ложил наличие зависимости между количеством потовых желез на коже вымени и соотношением железистой и соединительной тканей в нем. В результате ряда исследований был сделан вывод, что у коров, имеющих в коже большое количество потовых желез, при прочих равных условиях, более благоприятное соотношение между железистой и соединительной тканями. Для изучения пото­вых желез можно пробу для гистологического среза брать не из кожи вымени, а на ухе, что осуществляется просто и безболезненно для животного. Н. М. Замятин и многие другие ученые установили корреляционную связь между количеством потовых желез в коже ушной раковины коров и содержанием железистой ткани в вымени.

Все исследователи отметили большую изменчивость количества просветов потовых желез. Однако установлено, что при хорошем развитии потовых желез можно ожидать хорошего развития мо­лочной железы. Подтвердилось это и исследованиями Г. В. Кры­лова (1957). Оказалось, что коровы, у которых в молодом возрасте более развиты потовые железы, отличались впоследствии более высокими удоями. Н. А. Кравченко, А. Г. Безносенко и другие (1960), проанализировав данные по стаду племенного завода «Тростянец», также установили зависимость между развитием потовых желез у телок и их молочной продуктивностью во взрослом со­стоянии (табл. 2).

Таблица 2 Связь между развитием потовых желез у телок и их молочной продуктивностью

Число просветов потовых желез

Удой молока по 3-й лактации (кг)

Поскольку число просветов потовых желез в коже — качество, наследственно обусловленное, по их развитию в коже быка можно судить о молочности его дочерей. Работами С. Н. Конькова (1930), Н. Д. Замятиной (1961), Г. В. Крылова (1957) и др. было доказа­но, что оценка «молочности» быка по развитию желез в коже сов­падает с молочностью его дочерей. Некоторые ученые вели поиск, основываясь на предположении связи уровня функциональной деятельности кожных и молочных желез. Действительно, коровы с более интенсивным потоотделением отличались лучшей молоч­ностью. Количество серки в ушах (свидетельство уровня функции кожных желез) издавна служило в народной селекции признаком молочности. Количество в серке липидов связано с другим важ­ным показателем продуктивности — жирномолочностью. По дан­ным К. К. Бакаловой (1960), у коров симментальской породы, в по­те которых было больше липидов, наблюдался и больший процент жира в молоке. В исследованиях Е. В. Эйдригевича у коров джерсейской породы, отличающихся жирномолочностью, содержание липидов в серке составляло в среднем 61,84% при жирномолочно­сти 4,5%, а у красных степных (жидкомолочных) —соответствен­но 51,07 и 3,78%. Известно также (Г. В. Крылов), что коровы с большим содержанием жира в молоке отличаются лучшим раз­витием сальных желез, большей их дольчатостью, чем коровы с низкой жирностью молока.

Особенно велико значение исследований кожи в оценке про­дуктивности овец. Досконально изучена зависимость между особен­ностями строения кожи, густотой и качеством шерсти. Н. А. Диомидова, Е. Н. Панфилова и другие показали, что тонина шерсти — ее важнейшее с технологической точки зрения свойство — зависит от строения и расположения волосяных фолликулов. Из крупных, глубоко расположенных волосяных луковиц развиваются более грубые волокна, чем из мелких и поверхностно расположенных. Тонина шерстинки также зависит от толщины стенки волосяной сумки. Установлена также прямая зависимость между густотой шерсти и развитием кровеносных сосудов кожи. В Литовском научно-исследовательском институте животноводства успешно про­водится ранняя оценка баранчиков по гистологическим показате­лям. Этот метод основан на корреляции между густотой фоллику­лов в коже при рождении и настригом шерсти во взрослом состоя­нии (г = +0,66+0,15). Для этого у баранчиков в области лопатки или бочка ножницами путем биопсии берут образцы кожи. Обра­зец заключают между двумя квадратиками картона, перевязыва­ют и помещают в раствор 10%-ного формалина на 24—48 часов.

Затем по соответствующим гистологическим методикам приготов­ляют срезы и препараты, которые исследуют.

Исследования мускульных волокон. Изучение скелетных мышц с целью найти различия по величине мускульной клетки между животными разного направления продуктивности было начато К. Мальсбургом (1911). Он полагал, что размер мускульного во­локна, зависящий в большой степени от количества в нем воды, должен давать представление об интенсивности обмена веществ, темпераменте, конституции и хозяйственных качествах пород и ин­дивидуумов. Исходя из большой роли в жизни клетки ядра, он считал, что ядро взаимодействует с меньшим количеством плазмы клетки в том случае, если клетка невелика, то есть обмен веществ в ней происходит интенсивнее. Таким образом, мясные флегма­тичные животные должны иметь крупные, с большим количеством воды клетки, вес которых сравнительно больше, а энергичные жи­вотные— мелкие, сухие клетки, небольшого веса. Своими исследо­ваниями К. Мальсбург частично подтвердил эти положения.

Однако очень быстро пришли к выводу, что оценка животного по размеру клетки и содержанию в ней воды неприемлема. Тем более, что обнаружилось много исключений и противоречий. У шортгорнов (классическая мясная порода), например, мускуль­ная клетка оказалась мельче, чем даже у животных молочных по­род. В дальнейшем также убедились, что размер клетки зависит от возраста, пола, внешних условий, в частности от особенностей выращивания. Со времени первых исследований мышечного волок­на с точки зрения оценки конституции и продуктивных качеств сделано очень много открытий в области морфологии и физиоло­гии мышц. Зоотехническую же науку интересуют главным образом вопросы, связанные с характером формирования отдельных мышц (особенно дающих мясо высших сортов) в онтогенезе: интенсив­ность их роста, химический состав и прочие особенности, обуслов­ливающие получение мяса высокого качества и в максимальном количестве. Проблема прижизненного прогнозирования мясной продуктивности ждет своего решения, которое ни простым, ни лег­ким быть не может. Ведь, несмотря на то, что теперь на вооруже­нии морфологов имеется электронный микроскоп, а биохимики владеют тончайшими методиками анализа, до сих пор нет единого мнения о росте скелетных мышц ни в утробный, ни в послеутробный периоды.

Наследуемость (h 2 ) отдельных признаков, характеризующих мясные качества животных, отличается большой изменчивостью. Этими признаками являются вес при рождении, при отъеме, в кон­це откорма, вес туши, привес, оплата корма, качество мяса. Лишь последнее из них (качество мяса), для характеристики которого применяются лабораторные методы исследования, может считать­ся интерьерным. Однако методики прижизненной оценки или про­гноза этого свойства животных, разводимых с целью получения ценнейшего продукта в питании человека — мяса, пока нет.

Исследования костной ткани. Костной ткани в организме жи­вотного принадлежит не только опорная и двигательная функции. Об активной роли ее в минеральном обмене животного свидетель­ствуют результаты многих научных исследований. Состав ее не постоянен и отражает баланс электролитов в организме. Губчатое вещество кости наполнено кровообразующим красным костным мозгом, а в трубчатых костях взрослых животных содержится кост­ный мозг, который рассматривают как депо питательных веществ. Кость также резервирует минеральные вещества. Интересны рабо­ты, посвященные изучению физических и химических свойств кост­ной ткани животных различных видов и пород.

Известно, что на химический состав и крепость костей лошадей влияет минеральный состав почвы и кормов. Но независимо от этого в костях быстроаллюрных лошадей минеральных веществ больше, чем в костях лошадей шаговых пород. Рентгеновскими ис­следованиями у новорожденных жеребят установлена прямая связь ширины костномозговой полости с процентом гемоглобина. Прочность разных костей различна и зависит от возраста, породы, кормления животного. Прочность кости лошади на сжатие в 2—3 раза больше прочности гранита, а в отношении растяжения почти равна латуни и чугуну (П. Г. Алтухов). Методом рентгенографии И. Г. Шарабрин установил, что в организме высокопродуктивных коров во время интенсивного раздоя количество костного вещест­ва уменьшается. Этим методом начинают контролировать состоя­ние минерального обмена коров, поставленных на раздой.

Показатели температуры тела, частоты пульса и дыхания. Уро­вень продуктивности животных связан с интенсивностью окисли­тельно-восстановительных процессов, протекающих в организме. Более высокопродуктивные коровы отличаются учащенным пуль­сом, глубоким дыханием и высоким кровяным давлением. У лоша­ди по увеличению частоты пульса после испытаний судят о ее тре­нированности и работоспособности. Изменчивость этих показате­лей у здорового животного чрезвычайно высока и зависит от его возраста, пола, нервной и мускульной деятельности, полового со­стояния, уровня продуктивности, сезона года и многих других фак­торов. Поэтому их использование для оценки интерьера животного крайне ограничено, поскольку они в большинстве случаев отража­ют лишь колебания «в пределах нормы».

Исследование крови. От состава крови, от работы кровеносной системы зависит не только нормальная жизнедеятельность орга­низма, но и его продуктивность и воспроизводительная способ­ность. Поэтому при интерьерной оценке животных гематологиче­ские показатели имеют очень большое значение. Тем не менее не следует забывать, что состав крови может значительно изменяться в зависимости от возраста и пола животных, физиологического со­стояния организма (беременность, лактация, усиленная мышечная работа и т. д.), а также от типа кормления и сезона года. Поэтому связь между гематологическими показателями, типом конституциии особенностями продуктивности животных не всегда бывает до­статочно ясно выражена.

При изучении крови обращают внимание прежде всего на та­кие показатели, как количество эритроцитов и лейкоцитов, лейко­цитарная формула (содержание в процентах отдельных форм лей­коцитов), содержание гемоглобина, резервная щелочность крови, содержание белков, липидов, сахара и других веществ. Важным показателем является общее количество крови в организме, хотя определение его без убоя животного весьма сложно. Довольно хо­рошо изучены возрастные изменения гематологических показате­лей. По данным П. А. Акопяна (1939), у крупного рогатого скота общее количество крови увеличивается от первого месяца жизни до 7—8-летнего возраста в 9 раз. Процентное отношение крови к весу тела почти не изменяется. Количество эритроцитов и про­цент гемоглобина в крови новорожденных выше, чем в крови жи­вотных других возрастных групп. Диаметр эритроцитов с возра­стом увеличивается. На протяжении жизни животного происходят резкие изменения в процентном отношении нейтрофилов, лимфоци­тов и других форм лейкоцитов. Исследованиями Е. В. Эйдригеви­ча, X. Ф. Кушнера и других установлены довольно значительные половые различия в показателях крови. Так, у взрослых самцов содержание эритроцитов и гемоглобина выше, чем у самок.

Обнаружена связь между показателями крови и живым весом: по данным X. Ф. Кушнера и Е. В. Эйдригевича, А. П. Никольского и других исследователей, у крупного рогатого скота и овец в пре­делах породы более крупные животные имеют повышенное число эритроцитов, причем увеличивается и диаметр последних. Это свя­зано, по-видимому, с интенсивностью роста молодняка. В исследо­ваниях Е. В. Эйдригевича выявлена прямая зависимость между скоростью роста телят и ягнят и количеством эритроцитов в их крови.

Большой интерес представляет изучение показателей крови жи­вотных в связи с породными, конституциональными и продуктив­ными различиями. По данным В. И. Зайцева (1931, 1938), в крови лошадей верховых пород содержание эритроцитов выше, чем у тя­желовозов. В. И. Патрушев (1938) показал, что повышенная рез­вость у лошадей связана с большим содержанием в крови формен­ных элементов, сухих веществ, сахара, глютатиона, глобулинов, при пониженной частоте пульса и дыхания (в спокойном состоя­нии). Однако у крупного рогатого скота наблюдаются иные соот­ношения. В крови пород мясного направления число эритроцитов, содержание гемоглобина и сухого вещества выше, чем в крови мо­лочного скота. Опытами Е. В. Эйдригевича, И. С. Токаря, А. П. Ни­кольского, проведенными на животных симментальской, красной степной и тагильской пород, установлена аналогичная закономер­ность и внутри каждой породы: у животных узкотелого типа гема­тологические показатели ниже, чем у широкотелых. Однако это во­все не означает, что уровень окислительно-восстановительных процессов в организме молочных коров ниже, чем у мясного скота. Ведь жидкая фракция крови является тем материалом, из которо­го в организме коровы синтезируется молоко, и у молочной коро­вы этого материала должно быть очень много. Более низкая кон­центрация эритроцитов и гемоглобина в пробе крови компенси­руется большим объемом крови, лучшим кровоснабжением органов, тканей и клеток, хорошим развитием органов дыхания. П. А. Коржуев считает, что исследование состава «капли крови» без учета ее общего количества не может дать полного представления об уровне окислительно-восстановительных процессов в организме. Попытки многочисленных исследователей найти связь между ге­матологическими показателями и молочной продуктивностью коров дали весьма разноречивые результаты. Одни ученые (А. П. Ни­кольский, Г. А. Бондаренко и др.) установили определенную по­ложительную корреляцию между удоями и основными показате­лями крови, другие (С. Кронахер, X. Ф. Кушнер и др.) такой связи не обнаружили, а Л. Прохаска (1905) и Е. В. Эйдригевич (1949) нашли, что в крови высокопродуктивных коров содержание эри­троцитов и гемоглобина даже несколько понижено. Правда, по данным Е. В. Эйдригевича, существует достоверная корреляция между величиной годового удоя и показателями крови коровы пе­ред отелом, но во время лактации число эритроцитов снижается и начинает вновь увеличиваться лишь с уменьшением суточных удоев во второй половине лактации.

Жирномолочность является одним из важных показателей про­дуктивности. Неудивительно поэтому, что ученых особо интересу­ет вопрос о связи жирномолочности с содержанием тех или иных веществ в крови животных. В исследованиях Р. П. Жебенка и А. В. Вилунайте (1958), Г. И. Азимова (1971) довольно четко вы­явлена положительная корреляция между содержанием липидов в крови нетелей и их жирномолочностью в течение последующей лактации. В литературе имеются данные о связи гематологиче­ских показателей с шерстной продуктивностью у овец (Б. А. Плиев, 1947), с плодовитостью и молочностью у свиней (М. Д. Любец-кий, 1957), оплодотворяющей способностью спермиев у петухов (X. Ф. Кушнер и М. Д. Кондратюк, 1946), с качеством спермы у быков (Е. В. Эйдригевич).

Группы крови сельскохозяйственных животных.

В последнее десятилетие важное место в интерьерных ис­следованиях заняло изучение групп крови и других полиморфных систем крови (а также молока) животных. Начало учению о груп­пах крови было положено врачами-медиками, еще в прошлом сто­летии заметившими, что при переливании крови одного человека другому иногда происходит агглютинация (склеивание) эритроци­тов, приводящая к тяжелым осложнениям и даже смерти больно­го. В начале XX века Ландштейнер, Янский и другие ученые уста­новили, что это явление зависит от наличия в сыворотке крови осо­бых веществ белкового характера — антител. Дальнейшее изучение этого вопроса привело к возникновению науки иммунологии. С 1910 г. начали проводить изучение иммунологических явлений у крупного рогатого скота и у сельскохозяйственных животных других видов.

Учение о группах крови сводится в кратком изложении к сле­дующему. Когда в кровь животного попадают чужеродные (то есть не свойственные данному животному) белки или иные высо­комолекулярные соединения, то для их обезвреживания организм вырабатывает специфические защитные антитела. Вещества же, вызывающие образование антител, принято называть антигенами. У сельскохозяйственных животных наиболее хорошо изучены ан­тигены (или так называемые факторы крови), расположенные в оболочках эритроцитов, а также вырабатываемые против них ан­титела. Несмотря на то, что химический состав антигенов и анти­тел исследован еще недостаточно, взаимодействие между ними изу­чено весьма детально. Оно протекает чаще всего в виде реакций гемолиза и агглютинации. Если смешать в пробирке эритроциты одного животного с сывороткой крови другого животного, в кото­рой имеется одно или несколько антител против антигенов, нахо­дящихся в этих эритроцитах, то при соответствующих условиях ан­титело свяжется с антигеном, что вызовет разрушение оболочек эритроцитов. Произойдет гемолиз, то есть выход гемоглобина из разрушенных эритроцитов в сыворотку крови, вследствие чего она окрасится в интенсивно красный цвет. Такая реакция называется гемолитическим тестом (гемолитической пробой).

Для протекания гемолиза необходимы определенная темпера­тура (20—26°) и присутствие в пробирке комплемента — вещества не выявленного пока состава, содержащегося в большом количест­ве в сыворотке крови кроликов и морских свинок. Гемолиз является основным типом реакции между антителами и антигенами у круп­ного рогатого скота и овец. Взаимодействие антигена и антитела может приводить также к агглютинации (склеиванию) эритроци­тов. Реакция агглютинации применяется при исследовании групп крови у лошадей, свиней, кроликов и кур. Во всех случаях важней­шим свойством антител является их специфичность. Антитело всег­да реагирует только со «своим» антигеном, против которого оно выработано, и не реагирует ни с какими другими антигенами; то же можно сказать и об антигене. Такая высокая специфичность и дает возможность проводить анализ групп крови с большой точ­ностью.

Антитела делятся на естественные и иммунные. Естественные антитела содержатся в крови животных (а также человека) с са­мого рождения или образуются в течение короткого периода после рождения и присутствуют в организме большей частью в течение всей его жизни. К этой группе принадлежит несколько антител крупного рогатого скота, лошадей и свиней. Естественные антите­ла встречаются далеко не у всех животных данного вида, они не­многочисленны и поэтому играют в учении о группах крови весьма

ограниченную роль. Гораздо большее значение имеют иммунные антитела, которые удается получать посредством иммунизации жи­вотных, то есть введения эритроцитов одних животных (доноров) в кровяное русло или в мускулы других животных (реципиентов). После нескольких инъекций в сыворотке крови реципиента появ­ляются иммунные антитела, выработанные организмом против соответствующих антигенов донора. Конечно, антитела образуют­ся только против тех антигенов, которых нет в эритроцитах са­мого реципиента. Антигены донора, имеющиеся и у реципиента, не являются для последнего «чужими» веществами, и поэтому против них не вырабатываются антитела.

Донор и реципиент лишь в редких случаях отличаются друг от друга каким-либо одним антигеном. В большинстве случаев в эри­троцитах донора имеется несколько антигенов, которых нет у реципиента. Вследствие этого в организме реципиента вырабатыва­ется не одно антитело, а несколько, против всех «чужих» антиге­нов, и сыворотка его крови дает гемолитическую реакцию не с одним антигеном, а с несколькими. Такая сыворотка называется сырой сывороткой, и для анализа групп крови она непригодна. С целью удаления ненужных антител ее подвергают абсорбции, то есть последовательно смешивают с эритроцитами, содержащими соответствующие антигены, которые связываются с этими антите­лами (гемолиза при этом не происходит, так как к сыворотке не добавляют комплемент). После такой обработки в сыворотке оста­ется антитело только против одного фактора крови. Такая сыво­ротка называется специфической антисывороткой и является чув­ствительным реагентом, с помощью которого в эритроцитах любо­го животного данного вида (а иногда и других видов) можно об­наружить наличие соответствующего антигена. Специфические сы­воротки можно хранить в замороженном или высушенном виде в течение длительного времени.

При изучении наследования групп крови установлена важная закономерность: потомки могут иметь только такие факторы кро­ви, которые есть хотя бы у одного из его родителей; если у потом­ка имеется хотя бы один фактор, которого нет ни у отца, ни у ма­тери, это означает, что происхождение данного животного установ­лено по записям неверно. К этому нужно еще добавить, что у потомка совершенно не обязательно должны быть все факторы, имеющиеся у родителей; если родители являются гетерозиготными по каким-либо из факторов, эти антигены потомок может и не

унаследовать. Если бы потомки наследовали все антигены родите­лей, то у всех особей данного вида имелся бы полный набор фак­торов крови и иммуногенетический анализ происхождения живот­ных был бы невозможен.

Указанная закономерность и лежит в основе проверки проис­хождения животных путем анализа групп крови. У потомка и его предполагаемых родителей берут небольшое количество крови (по 10 мл), отделяют при помощи центрифугирования эритроциты, готовят 2%-ную суспензию в физиологическом растворен произво­дят определение имеющихся в эритроцитах антигенов. Для этого каплю суспензии эритроцитов смешивают в отдельных пробирках с двумя каплями каждой специфической сыворотки и каплей ком­племента. Наличие гемолиза в пробирке свидетельствует о том, что в эритроцитах имеется этот антиген; если гемолиза нет, то эри­троциты данного антигена не содержат. После окончания анализа сравнивают наборы факторов крови потомка и его родителей и де­лают тот или иной вывод о происхождении животного. В настоящее время на многих зарубежных станциях искусственного осеменения используют быков, происхождение которых проверено путем анали­за группы крови. Если вспомнить, что от быка получают за год не­сколько тысяч потомков и что ошибки в племенных записях о про­исхождении быков могут привести к большим ошибкам в племен­ной работе, становится очевидной важность такой проверки.

Определение групп крови, входящих в систему Ви и С, дает боль­ше всего данных для племенного анализа и при установлении про­исхождения животных. Наличие многочисленных групп крови соз­дает возможность для образования огромного числа комбинаций аллелей, вследствие чего животные, у которых группы крови совер­шенно одинаковы, практически не встречаются. Исключение состав­ляют лишь однояйцевые двойни, имеющие одинаковый тип крови (то есть совокупность всех групп крови). В литературе принято обозначать ген соответствующей группы крови большой буквой сис­темы с обозначением аллеля, написанным рядом сверху. Например, аллель группы крови BO1YoD’ системы В обозначается как B BOlY 2 D

У овец установлено семь систем крови, у свиней— 16, у лоша­дей — 8, у кур — 14. Поскольку учение о группах крови животных еще очень молодо, исследователи продолжают открывать новые ан­тигены и системы крови. Работа по изучению и практическому применению групп крови возможна только в условиях хорошо обо­рудованной лаборатории, при достаточно большом количестве жи­вотных (взрослых или молодых) для иммунизации и получения специфических сывороток. У иммунизированных животных прихо­дится брать много крови (4—5 л) для приготовления сывороток, поэтому с этой целью ценных маток и производителей стараются ие использовать.

В последние годы в СССР и за рубежом, кроме групп крови, стали уделять много внимания изучению полиморфизма белков крови, молока и яиц, выявляемого при помощи электрофореза на крахмальном геле. Оказалось, что многие белки (например, гемо­глобин) можно разделить электрофоретическим путем на несколь­ко типов, причем эти типы, подобно группам крови, контролиру­ются особыми генами. Так, у крупного рогатого скота выявлено четыре типа гемоглобина, десять типов трансферринов ((5-глобули-нов), несколько типов казеина, лактальбумина и лактоглобулина. В яйцах кур обнаружен генетически обусловленный полиморфизм альбуминов и других белков. Проводятся интересные исследования антигенных свойств спермы производителей. Установлено, что в некоторых случаях в организме самок образуются антитела, гу­бительно действующие на спермин некоторых производителей, что является одной из причин яловости.

Накопление знаний о группах крови и других полиморфных си­стемах привело к возникновению новой науки — иммуногенетики, данные которой все шире используются при разведении животных. Уже говорилось об уточнении происхождения животных путем анализа групп крови. Такое уточнение возможно и для животных, потерявших свой номер (конечно, если типы их крови были опре­делены еще до потери). Анализ групп крови дает возможность отличить однояйцевые (монозиготные) двойни, образовавшиеся из одной оплодотворенной яйцеклетки, от дизиготных однополых двоен. Во время эмбрионального развития разнополых двоен иног­да устанавливаются связи (анастомозы) между их кровеносными системами. При этом в организм телочки ‘попадает вместе с кровью бычка мужской половой гормон, вследствие чего нарушается нор­мальное развитие ее половых органов. По группам крови можно в самом раннем возрасте выявить таких телок — фримартинов и не планировать их использование для размножения.

Весьма перспективно применение групп крови при анализе про­исхождения отдельных стад, линий и целых пород скота. Исследо­вания Л. Рендела (1958) и других ученых выявили значительные межпородные различия в группах крови крупного рогатого скота. Поскольку факторы крови (антигены) стойко передаются от роди­телей к потомкам, изучение групп крови должно сыграть в племен­ном деле важную роль, помогая установить происхождение пород и отдельных групп животных и взаимоотношения между ними. Так, после анализа групп крови у чешского красно-пестрого скота И. Матоушек пришел к выводу, что в образовании этого скота уча­ствовали многие породы. И. Р. Гиллер (1970) в результате изуче­ния групп крови у симментальского скота в племенных заводах «Тростянец» и «Терезино» выявил довольно значительные разли­чия между этими стадами по распространенности некоторых алле­лей системы В.

Чрезвычайно интересной является идея о возможности связи наследования групп крови и других полиморфных признаков с на­следованием продуктивных свойств животных, например жирно­молочности. Правда, гены, контролирующие наследование групп крови, по-видимому, не оказывают прямого влияния на развитие тех или иных признаков продуктивности. Но эти гены могут нахо­диться в одних и тех же хромосомах с генами, определяющими продуктивность животных. В этом случае те или иные группы кро­ви могут служить «генетическими маркерами», сигнализирующими о наличии у данного животного генов высокой жирномолочности или других генов, непосредственно связанных с продуктивными свойствами животных. Поскольку группы крови можно определить сразу же после рождения животного, то можно предполагать, что

по ним смогут предсказывать его будущую продуктивность. Успеш­ное решение этого вопроса привело бы к «революции» в племенной работе. Имеется довольно много сообщений о связи между отдель­ными группами крови (а также другими полиморфными признака­ми) и некоторыми признаками продуктивности животных. Однако далеко не всегда опубликованные данные потверждаются при по­вторении исследований в других стадах и группах животных.

Весьма обнадеживающими являются исследования И. Р. Гиллера (1970), который определил группы крови знаменитой коровы Воротки 5992 (племенной завод «Тростянец»), уникальной по жирности молока (6,04%). Оказалось, что потомки Воротки, унаследовавшие от нее высокую жирномолочность, одновременно унаследовали и аллель OiTG’K’ системы В. Те же потомки Ворот­ки, у которых этот аллель отсутствовал, не имели и столь высокой жирномолочности. Конечно, эти данные еще требуют проверки на других животных, но они, во всяком случае, вселяют надежду на успешное разрешение данной проблемы. На основании приве­денного исследования значительно повысилась вероятность уста­навливать генетическое сходство между родителями и детьми не статистическими приемами («доли крови», генетическое сходство по формуле С. Райта), а по проценту повторений группы крови ро­дителя у потомка. Такое генетическое сходство не между группа­ми с большой численностью животных, а между индивидуумами было бы очень ценным при работе с линиями и семействами пле­менных животных для анализа сочетаемости, кроссов и скрещи­вания.

ПОЛИМОРФНЫЕ СИСТЕМЫ БЕЛКОВ КРОВИ ЖИВОТНЫХ И ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ИХ В СЕЛЕКЦИИ

крови, молока, яиц, тканей, изучаются их связи с уровнем продук­тивности, плодовитостью, жизнестойкостью, а также с заболевания­ми животных. Особый интерес представляют белки крови. Их много. Структура каждого белка кодируется одним или несколькими генами. Для целого ряда уже хорошо изученных белков характерны разные наследственно обусловленные фракции (формы), так называемые по­лиморфные системы. Явление наследственного полиморфизма обуслов­лено множественным аллелизмом соответствующего гена. Генетически обусловленные полиморфные системы могут быть выявлены серологи­чески (группы крови) или биохимическими методами (типы белков крови, молока, яиц и др.). Группы крови и системы полиморфных белков специфичны, индивидуальны для каждого животного и не из­меняются в течение жизни, не зависят от условий среда. Это позво­ляет использовать полиморфные системы белков для паспортизации животных по их сугубо индивидуальным группам крови и электрофоретическим типам белков. Определяют полиморфные системы белков и их типы (фракции) методом электрофореза в крахмальном геле по ме­тоду, разработанному в 1955 г. Смитисом и модернизированному дру­гими исследователями. Скорость и дальность миграции каждой фрак­ции зависит от величины ее электрического заряда и от размера макромолекулы белка. В электрическом поле молекулы одних фракций белков оказываются более подвижными («быстрыми»), а другие менее подвижными («медленными»). По скорости движения в электрическом поле на крахмальном геле зафиксированные и окрашенные фракции од­ной серии характеризуют фенотип исследуемого белка, специфичного для данного животного. Каждая из систем полиморфных белков насле­дуется по менделевским закономерностям, кодоминантно. При таком типе наследования ни одна из аллелей той или иной полиморфной системы белка не доминирует над другой и у гетерозигот на форе-грамме проявляются оба аллеля. При таком типе наследования фено­тип белка соответствует его генотипу, который имеет такое же бук­венное обозначение.

По Р.А.Хаертдинову, Л.А.Зубаревой (1977) в настоящее время у крупного рогатого скота известен полиморфизм по 20 системам белков и ферментов сыворотки крови, эритроцитов и молока. Наибо­лее широко изучались и изучаются такие полиморфные системы бел-

Целый ряд отечественных исследователей полиморфных систем белков крови: Л.В.Богданов и В.М.Обуховский (1967), В.А.Джумков (1970), Ю.О.Шапиро (1970), О.А.Иванова и др.(1971), Х.Ф.Кушнер и др. (1973), Н.Н.Колесник, В.И.Сокол (1972) и др., а за рубежом Эштон, Эбертус, Буш и др. считают, что полиморфизмы белков с ус­пехом можно и нужно использовать. практике селекции животных. Постоянствотипов полиморфных белков в онтогенезе, наследование по кодоминантному принципу позволяют использовать их в качестве маркеров отдельных животных для генетической характеристики по­пуляций, анализа происхождения пород, линий, семейств, установле­ния генетического сходства между отдельными животными, линиями, породами, контроля записей о происхождении. В последние годы ряд исследователей делают попытки установить связи различных типов белков крови и молока с биологическими особенностями и уровнем продуктивности животных, использовать их как биологические марке­ры при отборе и прогнозировании продуктивности животных в раннем возрасте. При этом исследования генетически обусловленных поли­морфных систем белков крови не отвергают сложившейся системы пле­менной работы, а дополняют и совершенствуют ее за счет введения объективных биохимических показателей.

ПОЛИМОРФИЗМ БЕЛКОВ КРОВИ И МОЛОКА В СВЯЗИ С УСТОЙЧИВОСТЬЮ КОРОВ К МАСТИТУ

В последние года появились сообщения, в которых устойчивость коров к маститу рассматривается в связи с полиморфизмом молочного

По данным Ю.М.Кривенцова и др. разная устойчивость к суб­клиническому маститу коров с типами лактоглобулина АА, АВ и ВВ может быть связана с различной ингибирующей активностью молока у таких коров. В работе Е.Митчерлиха отмечается пониженная частота групп крови В, К, у коров черно-пестрой порода, больных стрептококковым маститом.

в начале и конце лактации, обозначали как неспецифическое раздражение вымени.

Методом горизонтального электрофореза на крахмальном геле по Смитису (smithies) определяли типы полиморфных белков кро­ви и молока; для электрофореза молочных белков использовали моди­фикацию метода, предложенную Д.И.Погоняйло и Л.В.Богдановым.

В таблице I представлены результаты реакции с димастином. В обеих экологических группах суммарное количество здоровых коров и коров со слабым раздражением вымени оказалось сходным и состав­ляло около 52%. У шведских коров сильное раздражение вымени и суб­клинический мастит наблюдались несколько чаще (25,0%), чем у гол­ландских коров (17,0%), однако неспецифическое раздражение вымени в начале и конце лактации у них отмечалось реже (23,1%), чем у голландских коров (30,5%).

Анализ полиморфизма белков крови и молока по шести локусам

Шведские коровы из «здоровых» семей характеризовались досто­верно более высокой частотой гена (0,4865)пo сравнению с коровами из «больных» семей, в которых отмечался мастит (0,3776). Аналогичная тенденция повышенной частоты гена lg A в «здоровых» семьях по сравнению с «больными» отмечена и у голландских коров.

1. И.А. Кравченко « разведение с/х животных »

2. В.Ф. Красота и др. « разведение с/х животных »

3. Научные труды института им. В.В. Куйбышева

«Генетика полиморфных белков животных» Том 216

Источник

Читайте также:  В каких словах спрятались звери
Интересные факты и лайфхаки
Adblock
detector
Название: Интерьер животных
Раздел: Рефераты по ботанике и сельскому хозяйству
Тип: реферат Добавлен 03:14:34 05 сентября 2005 Похожие работы
Просмотров: 2355 Комментариев: 16 Оценило: 9 человек Средний балл: 4.6 Оценка: 5 Скачать