4 камерное сердце у кого из животных

Как трехкамерное сердце стало четырехкамерным

Выход позвоночных на сушу был связан с развитием легочного дыхания, что потребовало радикальной перестройки кровеносной системы. У дышащих жабрами рыб один круг кровообращения, а сердце, соответственно, двухкамерное (состоит из одного предсердия и одного желудочка). У наземных позвоночных — трех- или четырехкамерное сердце и два круга кровообращения. Один из них (малый) прогоняет кровь через легкие, где она насыщается кислородом. Затем кровь возвращается к сердцу и попадает в левое предсердие. Большой круг направляет обогащенную кислородом(артериальную) кровь ко всем прочим органам, где она отдает кислород и по венам возвращается к сердцу, попадая в правое
предсердие.
У животных с трехкамерным сердцем кровь из обоих предсердий попадает в единый желудочек, откуда она затем направляется и к легким, и ко всем прочим органам. При этом артериальная кровь смешивается с венозной. У животных с четырехкамерным сердцем в ходе развития изначально единый желудочек подразделяется перегородкой на левую и правую половины. В результате два круга кровообращения оказываются полностью разделены: бедная кислородом кровь попадает из правого предсердия в правый желудочек и идет оттуда к легким, насыщенная кислородом — из левого предсердия только в левый желудочек и идет оттуда ко всем прочим органам.
Формирование четырехкамерного сердца было необходимой предпосылкой развития теплокровности у млекопитающих и птиц. Ткани теплокровных потребляют очень много кислорода, поэтому им необходима “чистая” артериальная кровь, максимально насыщенная кислородом. А смешанной артериально-венозной кровью
могут довольствоваться холоднокровные позвоночные с трехкамерным сердцем. Трехкамерное сердце характерно для амфибий и большинства рептилий, хотя у последних намечается частичное разделение желудочка на две части (развивается неполная внутрижелудочковая перегородка). Настоящее четырехкамерное сердце развилось независимо в трех эволюционных линиях: у крокодилов,птиц и млекопитающих. Это яркий пример параллельной эволюции.
Биологам из США, Канады и Японии удалось частично расшифровать молекулярно-генетические основы этого важнейшего эволюционного события (Koshiba-Takeuchi et al., 2009). Ключевую роль в нем сыграли изменения в работе гена Tbx5. Этот ген, кодирующий регуляторный белок, по-разному экспрессируется в развивающемся сердце у амфибий (шпорцевой лягушки Xenopus) и теплокровных (курицы и мыши). У первых он равномерно экспрессируется по всему будущему желудочку, у вторых его экспрессия максимальна в левой части зачатка (в будущем левом желудочке) и минимальна справа. А как обстоит дело у рептилий? Выяснилось, что у рептилий — ящерицы и черепахи — на ранних эмбриональных стадиях ген Tbx5 экспрессируется так же, как у лягушки, т. е. равномерно по всему будущему желудочку. У ящерицы все так и остается до конца развития. Как и у лягушки, у ящерицы не формируется ничего похожего на перегородку (хотя бы частичную) между желудочками.
Что касается черепахи, то у нее на поздних стадиях формируется градиент экспрессии — такой же, как у цыпленка, только выражен ный слабее. Иными словами, в правой части желудочка активность гена постепенно снижается, а в левой остается высокой. Таким образом, по характеру экспрессии Tbx5 черепаха занимает промежуточное положение между ящерицей и курицей. То же самое можно сказать и о строении сердца. У черепахи формируется неполная перегородка между желудочками, но на более поздних стадиях, чем у цыпленка. Сердце черепахи занимает промежуточное положение между типичным трехкамерным (как у амфибий и ящериц) и четырехкамерным, как у крокодилов и теплокровных.
Чтобы подтвердить ведущую роль гена Tbx5 в эволюции сердца,были проведены опыты с модифицированными мышами. У этих мышей можно было по желанию экспериментатора отключать ген Tbx5 в той или иной части сердечного зачатка. Оказалось, что если выключить ген во всем зачатке желудочков, то зачаток даже
не начинает подразделяться на две половинки: из него развивается единый желудочек без всяких следов перегородки. Получаются мышиные зародыши с трехкамерным сердцем! Такие зародыши погибают на 12-й день эмбрионального развития.
В другом эксперименте авторам удалось добиться, чтобы ген Tbx5 равномерно экспрессировался во всем зачатке желудочков мышиного эмбриона — так же как у лягушки и ящерицы. Это опять-таки привело к развитию мышиных эмбрионов с трехкамерным сердцем.
Конечно, было бы еще интереснее сконструировать таких генно-модифицированных ящериц или черепах, у которых Tbx5 экспрессировался бы как у мышей и кур, т. е. в левой части желудочка сильно, а в правой — слабо, и посмотреть, не станет ли у них от этого сердце больше похожим на четырехкамерное. Но это пока неосуществимо: генная инженерия рептилий еще не продвинулась так далеко.
Ясно, что эволюция для создания теплокровности и всего того, что обеспечивает это преображение (сердце, система кровообращения, покровы, система выделения и т. д.), пользовалась простыми инструментами: чем меньше требуется менять настроек, тем лучше.И если трехкамерное сердце можно превратить в четырехкамерное за один шаг, то нет причин этим не воспользоваться.

Источник

Сердце у животных: строение, камеры, определение

Как устроено сердце у животных?

Почему оно так важно?

Сердце – жизненно важный орган со сложной структурой. Самая главная мышца во всем живом организме. Очень часто всю кровеносную систему (или еще по-другому сердечно-сосудистую) сравнивают с водопроводной системой, а сердце в ней выполняет роль насоса, только вместо воды перекачивает кровь. Кровь дает всем тканям и органам кислород и питательные вещества, а забирает углекислый газ и продукты обмена.

У нас с вами и у наших кошек и собак, как и у всех млекопитающих, сердце утроено почти одинаково. Внешне оно выглядит совсем не так, как вы его себе представляете. Орган больше похож на перевернутый конус. Это полый орган, состоящий из камер и мышечных стенок. Камер всего 4. По аналогии сердце можно сравнить с двухэтажным домом, первый этаж представляют желудочки, правый и левый, второй – правое и левое предсердие. Правые и левые половины сердца у здоровых животных не сообщаются. Кровь благодаря этому четко разделяется на артериальную, богатую кислородом, и венозную, бедную кислородом. Правая половина сердца является венозной, в нее собирают со всего организма кровь, бедную кислородом, и далее она направляется по сосудам в легкие, где и обогащается кислородом. Затем из легких уже по легочным венам (она называются венами, но несут в себе артериальную, то есть богатую кислородом, кровь) кровь поступает в левое предсердие, затем в левый желудочек и далее через аорту разносится по всему организму.

Читайте также:  Волонтерские организации в красноярске для животных

Предсердия, желудочки и главные сосуды разделяют клапаны. Они устроены по типу дверей, которые открываются только в одну сторону. Они состоят из створок.

Разделение крови на большой и малый круг кровообращения (артериальную и венозную кровь) является принципиальной особенностью строения сердца млекопитающих.

Само сердце кровоснабжается специальными сосудами, которые называются коронарными, потому что образую собой сеть наподобие «короны». Они отходят от аорты в самом ее начале.

Что обеспечивает постоянные сокращения сердечной мышцы?

Биение сердца, которое является его ритмом, обеспечивается электрическими импульсами, которые формируются самой сердечной мышцей. Эти импульсы формируются в правом предсердии, а затем идут про межжелудочковой перегородке и далее по всем желудочкам, заставляя их сокращаться.

Несмотря на то, что сердце животных и человека устроено очень похоже, заболевания все же различаются. Например, у животных практически никогда не бывает инфарктов миокарда, так как не бывает ишемической болезни сердца и атеросклеротических бляшек. У них по-другому устроены коронарные сосуды и обмен жиров происходит иначе. Поэтому никогда не стоит заниматься самолечением животных.

Для того, чтобы заподозрить болезни сердца, необходимо обнаружить различные клинические проявления, о которых Вы можете прочитать в нашей статье — КОГДА МОЖНО ЗАПОДОЗРИТЬ ЗАБОЛЕВАНИЕ СЕРДЦА У ЖИВОТНОГО?

Строение сердца животных

Сердце (кор, кардиа) представляет собой полый мышечный орган конусовидной формы. Имеет основание (базис кордис), которое обращено каудодорсально и верхушку сердца (апекс кордис), обращенную кранио-вентрально. У всех млекопитающих 4камерное. 2 предсердия и два желудочка. Предсердия (атриум) располагаются в области основания сердца и занимают незначительный объем.

Снаружи предсердия от желудочков отделяются венечной бороздой. Предсердия имеют слепые выпячивания — ушки, которые увеличивают объем предсердий. Изнутри ушки имеют гребешковые мышцы, которые при сокращении предсердий способствуют более полному выталкиванию крови. Желудочки (вентрикулюм) занимают всю остальную площадь сердца. Изнутри сердце разделено мышечной перегородкой на правую и левую половины, которые между собой не сообщаются. Сообщение происходит правого предсердия и правого желудочка и левого предсердия и левого желудочка.

Сообщение предсердия с желудочками происходит с помощью атриовентрикулярных(предсердно-желудочковых) отверстий.

Грудная аорта проходит в грудной полости вентрально от позвоночного столба, далее через диафрагму и называется уже брюшной аортой, которая затем в области первых крестцовых позвонков переходит в среднюю крестцовую артерию, затем в хвостовую. Из правого желудочка общим стволом выходит легочная артерия, которая затем делится на два ствола, идущих к правому и левому легким. В левое предсердие впадают легочные вены (2-7, 5-7), в правое предсердие впадают краниальная и каудальная полые вены.

Клапанный аппарат сердца.

представлен створчатыми клапанами, которые закрывают атриовентрикулярные отверстия, причем с левой стороны расположен двустворчатый клапан (митральный клапан), справа – трехстворчатый клапан.

Створчатые клапаны присоединяются к гребешковым мышцам при помощи сухожильных струн. Полулунные(кармашковые) клапаны расположены на выходе аорты и на выходе легочной артерии. Клапаны обеспечивают ток крови в одном направлении. Сердце работает строго ритмично. Вначале происходит одновременное сокращение предсердий, створчатые клапаны открываются и кровь из предсердий поступает в желудочки. Предсердия расслабляются. Створчатые клапаны закрываются. Происходит одновременное сокращение желудочков.

Полулунные клапаны открываются, и кровь из левого желудочка поступает в аорту, из правого в легочную артерию. Желудочки расслабляются, наступает общая пауза. Процесс повторяется.

Внешне левый желудочек больше и толще, правый желудочек тоньше.

Верхушка сердца всегда принадлежит левому желудочку.

Строение сердца животных

Состоит сердце состоит из 3 слоев: эпикард (наружная)-тонкая пленочка, миокард(средняя)-мышечная, эндокард-внутренняя оболочка.

Большой или системный круг кровообращения начинается в левом желудочке аортой и заканчивается в правом предсердии полыми венами.

Малый круг или легочный начинается в правом желудочке легочной артерией и заканчивается в левом предсердии легочными венами.

В левой половине сердца циркулирует артериальная кровь, в правой-венозная кровь. Кровь в сердце не смешивается.

Особенности кровообращения плода.

1. Происходит связь плода с организмом матери через плаценту.

2. Между предсердиями имеется овальное отверстие

3. Кровь в организме плода циркулирует смешанная (по большому кругу кровообращения)

4. Имеется Боталов(артериальныйгрудной) проток, который соединяет легочную артерию и грудную аорту

5. Малый круг кровообращения не выполняет своего функционального назначения

Фиброзный скелет сердца представлен фиброзными кольцами, которые окружают атриовентрикулярные отверстия и располагаются на выходе аорты и легочной артерии.

Строение околосердечной сорочки (перикарда)

Нервно-мышечнаяпроводящая система сердца представлена синусным узлом (сино-артериальный) и атриовентрикулярным узлом.

Синусный узел располагается между правым сердечным ушком и краниальной полой веной. Атриовентрикулярный узел лежит в межжелудочковой перегородке. От него отделяется пучок Гисса, который общей ножкой проходит через межжелудочковую перегородку и делится на правую и левую ножки, идущие по стенкам желудочков.

В миокарде желудочков ножки разветвляются на волокна Пуркенье. Они являются дифференцированными мышечными волокнами, способными самостоятельно проводить возбуждение. Синусный и атриовентрикулярный узлы представляют симпатическую нервную систему. Рядом с узлами располагаются одноименные ганглии. В этих ганглиях заканчиваются волокна блуждающего нерва.

Ганглии между собой соединены нервными волокнами, которые образуют инрамуральное парасимпатическое сплетение.

Сердце располагается в грудной полости между легкими впереди диафрагмы, смещено влево.

Основание сердца располагается в области середины первого ребра, верхушка сердца в области 5-6 межреберного пространства ближе к грудной кости. У хищных основание располагается в области 1-3 ребра, верхушка в области 6-7 межреберного пространства. У хищных сердце расположено почти горизонтально.

Сердце животных (часть 1)

Кровеносная система млекопитающих представляет собой высшую форму кровообращения.

Как и у птиц, она характеризуется четырёхкамерным сердцем и двумя кругами – большим и малым.

Такая форма способствует ускоренному обмену веществ по сравнению с другими группами позвоночных: фактически перед нами «два сердца», установленные в разных частях сосудистой системы.

Кровь в обеих половинах сердца не смешивается.

«Лёгочный» круг

За малый круг «отвечает» правая половина сердца. Из правого желудочка венозная кровь, обеднённая кислородом, направляется по лёгочным артериям в лёгкие. Там она насыщается кислородом и по лёгочным венам следует в левое предсердие.

Насыщение кислородом активнее проявляется у млекопитающих с активным образом жизни, а именно у хищников; у малоподвижных животных газообмен происходит относительно медленно.

«Основной» круг кровообращения

Большой круг зарождается в левом желудочке.

Идущая от него единственная дуга аорты левая, а не правая, как у птиц. Ответвления от неё разносят кровь по всему телу, насыщая органы и ткани кислородом и другими необходимыми веществами.

строение кровеносной системы млекопитающих фото

От них же она принимает углекислый газ и продукты обмена веществ.

Венозная кровь, насыщенная углекислотой, по венам направляется в правое предсердие. В него впадают две полые вены, первая из которых несёт кровь от головы и передних конечностей, а вторая от задней части тела.

Состав крови млекопитающих

Кровь млекопитающих состоит из жидкой плазмы, в которой содержится полный набор так называемых форменных элементов:

Читайте также:  Девушка из хабаровска издевалась над животными

Эритроциты и тромбоциты млекопитающих, в отличие от других групп животных, не содержат ядер.

Тромбоциты и вовсе представляют собой «кровяные пластинки»; отсутствие ядер у эритроцитов объясняется необходимостью вместить большее количество гемоглобина.

Также у эритроцитов нет митохондрий, поэтому синтез АТФ они осуществляют без использования кислорода, благодаря чему являются наиболее эффективными его переносчиками.

Лимфатическая система

Лимфатическая система тесно связана с кровеносной и является посредником между ней и тканями в обмене питательными веществами.

Она состоит из кровяной плазмы и лимфоцитов.

Примечательно, что у млекопитающих нет «лимфатических сердец», в отличие от пресмыкающихся и земноводных, — так называют участки лимфатических сосудов, способные сокращаться: лимфа у млекопитающих, ведущих гораздо более активный образ жизни, движется за счёт сокращения мышц скелета.

У млекопитающих также имеются лимфаузлы, очищающие лимфу от вредоносных микроорганизмов.

Анатомия животных сердце

По своему составу лимфа сходна с кровью, но в ней содержится меньше белков и больше жиров. Жиры проникают в неё из пищеварительного тракта.

Пульс

Частота сердечных сокращений у млекопитающих высокая, однако существенно ниже, чем у птиц. Исключением являются мелкие животные вроде мышей, чей пульс равен 600 ударам.

У собаки пульс равен 140 ударам, а у быка и слона – всего 24 ударам. Водные млекопитающие способны понижать свой пульс после погружения в глубину.

Сердечно-сосудистая система животных

Как устроено сердце у животных?

У млекопитающих сердце расположено в грудной клетке между легкими, за грудиной. Оно окружено конусовидным мешком — околосердечной сумкой, или перикардом, наружный слой которого состоит из нерастяжимой белой фиброзной ткани, а внутренний — из двух листков, висцерального и париетального.

Висцеральный листок сращен с сердцем, а париетальный — с фиброзной тканью. В щель между этими листками выделяется перикардиальная жидкость, которая уменьшает трение между стенками сердца и окружающими тканями.

Неэластичный в целом характер перикарда препятствует излишнему растяжению сердца или переполнению его кровью.

Сердце состоит из четырех камер: двух верхних — тонкостенных предсердий и двух нижних — толстостенных желудочков (рис. 14.50). Правая половина сердца полностью отделена от левой. Функция предсердий состоит в том, чтобы собирать и на короткое время задерживать кровь, пока она не перейдет в желудочки.

Расстояние от предсердий до желудочков очень мало, поэтому от предсердий не требуется большой силы сокращения. В правое предсердие поступает дезоксигенированная кровь из системного круга, а в левое — насыщенная кислородом кровь из легких.

Мышечные стенки левого желудочка по меньшей мере втрое толще стенок правого желудочка. Эта разница связана с тем, что правый желудочек снабжает кровью только легочный (малый) круг кровообращения, тогда как левый гонит кровь по системному (большому) кругу, снабжающему кровью все тело. Соответственно кровь, поступающая в аорту из левого желудочка, находится под значительно большим давлением (приблизительно 105 мм рт. ст.), чем кровь, поступающая в легочную артерию (16 мм рт.ст.).


Рис. 14.50. Сердце млекопитающего (в разрезе)

14.34. Какие другие преимущества дает более низкое давление крови в легочном круге по сравнению с большим кругом?

При сокращении предсердий кровь выталкивается в желудочки, и при этом кольцевые мышцы, расположенные при впадении полых и легочных вен в предсердия, сокращаются и перекрывают устья вен, благодаря чему кровь не может оттекать обратно в вены.

Левое предсердие отделено от левого желудочка двустворчатым клапаном, а правое предсердие от правого желудочка — трехстворчатым клапаном. К створкам клапанов со стороны желудочков прикреплены прочные сухожильные нити, которые другим концом прикреплены к конусовидным сосочковым (папиллярным) мышцам, представляющим собой выросты внутренней стенки желудочков. При сокращении предсердий клапаны открываются, а при сокращении желудочков створки клапанов плотно смыкаются, препятствуя возврату крови в предсердия.

Одновременно сокращаются сосочковые мышцы, натягивая сухожильные нити и препятствуя выворачиванию клапанов в сторону предсердий. У основания легочной артерии и аорты находятся соединительнотканные карманы — полулунные клапаны, пропускающие кровь в эти сосуды и препятствующие ее возвращению в сердце.

Стенки сердца состоят из сердечных мышечных волокон, соединительной ткани и мельчайших кровеносных сосудов. Каждое мышечное волокно содержит одно или два ядра, миофиламенты и множество крупных митохондрий.

Мышечные волокна разветвляются и соединяются между собой концами, образуя сложную сеть. Это обеспечивает быстрое распространение волн сокращения по волокнам, так что каждая камера сокращается как одно целое. В стенках сердца не содержится никаких нейронов (рис. 14.51 и 14.52).


Рис. 14.51. Строение сердечной мышцы


Рис. 14.52. Микрофотография среза сердечной мышцы

Источник

Расшифрован молекулярный механизм превращения трехкамерного сердца в четырехкамерное

Появление четырехкамерного сердца у птиц и млекопитающих было важнейшим эволюционным событием, благодаря которому эти животные смогли стать теплокровными. Детальное изучение развития сердца у эмбрионов ящерицы и черепахи и сравнение его с имеющимися данными по амфибиям, птицам и млекопитающим показало, что ключевую роль в превращении трехкамерного сердца в четырехкамерное сыграли изменения в работе регуляторного гена Tbx5, который функционирует в изначально едином зачатке желудочка. Если Tbx5 эспрессируется (работает) равномерно по всему зачатку, сердце получается трехкамерным, если только с левой стороны — четырехкамерным.

Выход позвоночных на сушу был связан с развитием легочного дыхания, что потребовало радикальной перестройки кровеносной системы. У дышащих жабрами рыб один круг кровообращения, а сердце, соответственно, двухкамерное (состоит из одного предсердия и одного желудочка). У наземных позвоночных — трех- или четырехкамерное сердце и два круга кровообращения. Один из них (малый) прогоняет кровь через легкие, где она насыщается кислородом; затем кровь возвращается к сердцу и попадает в левое предсердие. Большой круг направляет обогащенную кислородом (артериальную) кровь ко всем прочим органам, где она отдает кислород и по венам возвращается к сердцу, попадая в правое предсердие.

У животных с трехкамерным сердцем кровь из обоих предсердий попадает в единый желудочек, откуда она затем направляется и к легким, и ко всем прочим органам. При этом артериальная кровь в той или иной степени смешивается с венозной. У животных с четырехкамерным сердцем в ходе эмбрионального развития изначально единый желудочек подразделяется перегородкой на левую и правую половины. В результате два круга кровообращения оказываются полностью разделены: венозная кровь попадает только в правый желудочек и идет оттуда к легким, артериальная — только в левый желудочек и идет оттуда ко всем прочим органам.

Формирование четырехкамерного сердца и полное разделение кругов кровообращения было необходимой предпосылкой развития теплокровности у млекопитающих и птиц. Ткани теплокровных животных потребляют очень много кислорода, поэтому им необходима «чистая» артериальная кровь, максимально насыщенная кислородом, а не смешанная артериально-венозная, которой довольствуются холоднокровные позвоночные с трехкамерным сердцем (см.: Филогенез кровеносной системы хордовых).

Читайте также:  Животные на календарь литэ

Трехкамерное сердце характерно для амфибий и большинства рептилий, хотя у последних намечается частичное разделение желудочка на две части (развивается неполная внутрижелудочковая перегородка). Настоящее четырехкамерное сердце развилось независимо в трех эволюционных линиях: у крокодилов, птиц и млекопитающих. Это считается одним из ярких примеров конвергентной (или параллельной) эволюции (см.: Ароморфозы и параллельная эволюция; Параллелизмы и гомологическая изменчивость).

Большая группа исследователей из США, Канады и Японии, опубликовавшая свои результаты в последнем номере журнала Nature, задалась целью выяснить молекулярно-генетические основы этого важнейшего ароморфоза.

Авторы детально изучили развитие сердца у эмбрионов двух рептилий — красноухой черепахи Trachemys scripta и ящерицы анолиса (Anolis carolinensis). Рептилии (кроме крокодилов) представляют особый интерес для решения поставленной задачи, поскольку строение их сердца по многим признакам — промежуточное между типичным трехкамерным (таким, как у амфибий) и настоящим четырехкамерным, как у крокодилов, птиц и зверей. Между тем, по утверждению авторов статьи, вот уже 100 лет никто всерьез не изучал эмбриональное развитие сердца рептилий.

Исследования, выполненные на других позвоночных, до сих пор не дали однозначного ответа на вопрос о том, какие генетические изменения обусловили формирование четырехкамерного сердца в ходе эволюции. Было, однако, замечено, что регуляторный ген Tbx5, кодирующий белок — регулятор транскрипции (см. транскрипционные факторы), по-разному работает (экспрессируется) в развивающемся сердце у амфибий и теплокровных. У первых он равномерно экспрессируется по всему будущему желудочку, у вторых его экспрессия максимальна в левой части зачатка, из которой в дальнейшем формируется левый желудочек, и минимальна справа. Обнаружилось также, что уменьшение активности Tbx5 ведет к дефектам в развитии перегородки между желудочками. Эти факты позволили авторам предположить, что изменения в активности гена Tbx5 могли сыграть какую-то роль в эволюции четырехкамерного сердца.

В ходе развития сердца ящерицы в желудочке развивается мышечный валик, частично отделяющий выходное отверстие желудочка от его основной полости. Этот валик некоторыми авторами трактовался как структура, гомологичная межжелудочной перегородке позвоночных с четырехкамерным сердцем. Авторы обсуждаемой статьи на основе изучения роста валика и его тонкой структуры отвергают эту трактовку. Они обращают внимание на то, что такой же валик ненадолго появляется и в ходе развития сердца куриного эмбриона — наряду с настоящей перегородкой.

Полученные авторами данные свидетельствуют о том, что у ящерицы никаких структур, гомологичных настоящей межжелудочной перегородке, по-видимому, не формируется. У черепахи, напротив, формируется неполная перегородка (наряду с менее развитым мышечным валиком). Формирование этой перегородки у черепахи начинается намного позже, чем у цыпленка. Тем не менее получается, что у ящерицы сердце более «примитивное», чем у черепахи. Сердце черепахи занимает промежуточное положение между типичным трехкамерным (таким как у амфибий и ящериц) и четырехкамерным, таким как у крокодилов и теплокровных. Это противоречит общепринятым представлениям об эволюции и классификации рептилий. На основе анатомических признаков черепах традиционно считали самой примитивной (базальной) группой среди современных рептилий. Однако сравнительный анализ ДНК, проведенный рядом исследователей, раз за разом упрямо указывал на близость черепах к архозаврам (группе, включающей крокодилов, динозавров и птиц) и на более базальное положение чешуйчатых (ящериц и змей). Строение сердца подтверждает эту новую эволюционную схему (см. рисунок).

Авторы изучили экспрессию нескольких регуляторных генов в развивающемся сердце черепахи и ящерицы, в том числе гена Tbx5. У птиц и млекопитающих уже на очень ранних стадиях эмбриогенеза в зачатке желудочков образуется резкий градиент экспрессии этого гена (экспрессия быстро убывает слева направо). Оказалось, что у ящерицы и черепахи на ранних стадиях ген Tbx5 экспрессируется так же, как у лягушки, то есть равномерно по всему будущему желудочку. У ящерицы такая ситуация сохраняется до конца эмбриогенеза, а у черепахи на поздних стадиях формируется градиент экспрессии — по существу, такой же, как у цыпленка, только выраженный слабее. Иными словами, в правой части желудочка активность гена постепенно снижается, а в левой остается высокой. Таким образом, по характеру экспрессии гена Tbx5 черепаха тоже занимает промежуточное положение между ящерицей и курицей.

Известно, что белок, кодируемый геном Tbx5, является регуляторным — он регулирует активность многих других генов. На основе полученных данных естественно было предположить, что развитие желудочков и закладка межжелудочковой перегородки идут под управлением гена Tbx5. Ранее уже было показано, что уменьшение активности Tbx5 у мышиных эмбрионов ведет к дефектам в развитии желудочков. Этого, однако, было недостаточно, чтобы считать доказанной «руководящую» роль Tbx5 в формировании четырехкамерного сердца.

Для получения более веских доказательств авторы использовали несколько линий генетически модифицированных мышей, у которых в ходе эмбрионального развития ген Tbx5 можно было отключать в той или иной части сердечного зачатка по желанию экспериментатора.

Оказалось, что если выключить ген во всем зачатке желудочков, то зачаток даже не начинает подразделяться на две половинки: из него развивается единый желудочек без всяких следов межжелудочной перегородки. Характерные морфологические признаки, по которым можно отличить правый желудочек от левого независимо от наличия перегородки, тоже не формируются. Иными словами, получаются мышиные зародыши с трехкамерным сердцем! Такие зародыши погибают на 12-й день эмбрионального развития.

Следующий эксперимент состоял в том, что ген Tbx5 отключили только в правой части зачатка желудочков. Тем самым градиент концентрации регуляторного белка, кодируемого этим геном, был резко смещен влево. В принципе, можно было ожидать, что в такой ситуации межжелудочная перегородка начнет формироваться левее, чем положено. Но этого не произошло: перегородка не начала формироваться вовсе, зато наметилось подразделение зачатка на левую и правую части по другим морфологическим признакам. Это значит, что градиент экспрессии Tbx5 — не единственный фактор, управляющий развитием четырехкамерного сердца.

В другом эксперименте авторам удалось добиться, чтобы ген Tbx5 равномерно экспрессировался во всем зачатке желудочков мышиного эмбриона — примерно так же, как у лягушки или ящерицы. Это опять-таки привело к развитию мышиных эмбрионов с трехкамерным сердцем.

Полученные результаты показывают, что изменения в работе регуляторного гена Tbx5 действительно могли сыграть важную роль в эволюции четырехкамерного сердца, причем эти изменения произошли параллельно и независимо у млекопитающих и архозавров (крокодилов и птиц). Таким образом, исследование еще раз подтвердило, что в эволюции животных ключевую роль играют изменения в активности генов — регуляторов индивидуального развития.

Конечно, было бы еще интереснее сконструировать таких генно-модифицированных ящериц или черепах, у которых Tbx5 экспрессировался бы как у мышей и кур, то есть в левой части желудочка сильно, а в правой — слабо, и посмотреть, не станет ли у них от этого сердце больше похожим на четырехкамерное. Но это пока технически неосуществимо: генная инженерия рептилий еще не продвинулась так далеко.

Источник

Интересные факты и лайфхаки
Adblock
detector