Анаконда python как пользоваться

Содержание
  1. Развертываем Anaconda – дистрибутив Python для data science
  2. Anaconda – обширный пакет для data science с открытым исходным кодом и сообществом в 6 млн пользователей.
  3. Установка Anaconda
  4. Поиск и установка приложений
  5. Больше об Anaconda Python
  6. Начало работы с Anaconda
  7. Первая программа на Python: Hello, Anaconda!
  8. Откройте Navigator
  9. Запустите Python в Spyder IDE
  10. Закройте Spyder
  11. Запустите Python в Jupyter Notebook
  12. Закройте Jupyter Notebook
  13. Закройте Navigator
  14. Напишите программу на Python с помощью Anaconda Prompt или терминала
  15. Откройте Anaconda Prompt
  16. Запустите Python
  17. Напишите программу на Python
  18. Выйдите из Python
  19. Появились вопросы? Задайте на Яндекс Кью
  20. Знакомство с Anaconda: что это такое и как установить
  21. Простое руководство по Anaconda и его установке на Ubuntu 16.04 (64-bit).
  22. Что такое Anaconda?
  23. Как возникла Anaconda?
  24. Простая установка
  25. Шаг 1: скачивание bash-скрипта Anaconda
  26. Шаг 2: проверка целостности
  27. Шаг 3: запуск bash-скрипта
  28. Шаг 4: установка криптографических библиотек
  29. Шаг 5: подтверждение папки
  30. Шаг 6: активация и проверка
  31. Python 3 | Data Science | Нейронные сети | AI — Искусственный Интеллект
  32. Инструкция по Anaconda & Conda. Как управлять и настроить среду для Python?
  33. от Шамаев Иван
  34. Conda vs. Pip vs. Venv — в чем разница?
  35. Что такое Anaconda? Обо всем по порядку…
  36. Что такое Анаконда Навигатор?
  37. Зачем использовать Навигатор?
  38. Почему Вам могут потребоваться несколько сред Python?
  39. Создание новой среды в Anaconda Navigator
  40. Добавление нового канала в Anaconda Навигаторе
  41. Как начать работу в новой среде Conda?
  42. Настройка среды для Spyder
  43. Как открыть Jupyter Notebook в новой среде MyNewEnvironmentName
  44. Anaconda3 Prompt cmd Conda Command — Запуск команд через консоль
  45. Установка новой библиотеки (пакета) в среду
  46. Исполняемые файлы в среде Conda
  47. Видео по Anaconda Youtube
  48. Использование Anaconda с Doker
  49. Jupyter Notebook: цифровая лабораторная тетрадь
  50. Conda
  51. Команды Conda
  52. Управление Conda и Anaconda
  53. Управление средами — Managing Environments
  54. Управление Python
  55. Управление пакетами (Packages), включая Python
  56. Удаление Пакетов (Packages) или Сред (Environments)

Развертываем Anaconda – дистрибутив Python для data science

Anaconda – обширный пакет для data science с открытым исходным кодом и сообществом в 6 млн пользователей.

Как и многие другие, однажды я начал свой путь в быстро растущей сфере науки о данных. Когда проходил курсы по языкам программирования R и Python на Udemy, я скачивал и устанавливал нужные приложения независимо друг от друга. Столкнувшись с трудностями установки data science пакетов вроде NumPy и Matplotlib и пытаясь «подружить» различные зависимости, я и узнал о дистрибутиве Anaconda для Python.

Пакет легко скачать и установить, имеется поддержка Linux, MacOS и Windows. Мне нравится, как Anaconda облегчает новым пользователям первые шаги.

В дистрибутив входит более 1000 пакетов для работы с данными, а также пакет Conda вместе с системой управления виртуальной средой. Благодаря этому отпадает необходимость устанавливать каждую библиотеку по отдельности. Как отмечено на сайте Anaconda, «Пакеты для Python и R в репозитории Anaconda настраиваются и компилируются в нашей безопасной среде, так что вы получаете оптимизированные исполняемые файлы, которые просто работают на вашей системе».

Я советую использовать Anaconda Navigator — десктопный графический интерфейс (GUI), предоставляющий доступ ко всем приложениям в дистрибутиве, включая RStudio, iPython, Jupyter Notebook, JupyterLab, Spyder, Glue, и Orange. Среда исполнения по умолчанию — Python 3.6, но вы можете с легкостью установить Python 3.5, Python 2.7 или R. Документация невероятно подробная, а дополнительную поддержку можно получить от замечательного сообщества пользователей.

Установка Anaconda

Чтобы установить Anaconda на мой ноутбук (Linux, Core i3 с 4Гб RAM), я скачал установщик Anaconda 5.1 для Linux и запустил для файла проверку хеш-суммы md5sum :

Дальше я последовал инструкциям в документации. Там предписывали запустить следующую bash-команду (даже если ваша командная оболочка — не Bash):

После установки запустил Anaconda Navigator с помощью следующей команды:

Каждый раз при запуске Anaconda Navigator проверяет наличие новых версий и предлагает их установить.

Anaconda успешно обновилась, возвращаться к командной строке не понадобилось. Первый запуск Anaconda был несколько медленным. Учитывая обновления, на то, чтобы приступить, ушло еще несколько минут. Обновления можно также запустить вручную при помощи следующей команды:

Поиск и установка приложений

Запустив Navigator, я смог исследовать разнообразие приложений, поставляющихся с Anaconda Distribution. Согласно документации, версия Anaconda для Python 3.6 (64 бита) поддерживает 499 пакетов. Первым приложением, с которым я ознакомился, было Jupyter QtConsole. Его простой в использовании GUI поддерживает встроенные графики и подсветку синтаксиса.

Jupyter Notebook уже включен в дистрибутив, поэтому в отдельной установке нет нужды (в отличие от других сред разработки Python, которыми мне приходилось пользоваться).

С RStudio я уже был знаком. Этот инструментарий не установлен по умолчанию, но добавляется одним кликом мыши, как и целый ряд других приложений: JupyterLab, Orange, Glue, Spyder и т.д.

Одно из преимуществ дистрибутива Anaconda – возможность настроить несколько сред разработки. Например, если я захочу создать среду c Python 2.7 вместо дефолтной версии Python 3.6, я введу в консоли:

Conda позаботится об установке. Чтобы ее запустить, введите в терминале:

Выберите среду py27 из выпадающего списка «Приложения на» в Anaconda GUI.

Больше об Anaconda Python

Информации об Anaconda очень много. Если желаете глубже изучить ее инструментарий, можно начать со списка ресурсов на этой странице и с данного форума.

Читайте также:  Приснился сон что укусила змея за руку к чему это

Источник

Начало работы с Anaconda

Дистрибутив Anaconda включает conda и Anaconda Navigator, а также Python и сотни пакетов, используемых в научных вычислениях. При установке Anaconda все эти элементы также устанавливаются.

Conda работает в командной строке так же, как Anaconda Prompt в Windows и терминал в macOS и Linux.

Navigator — это настольная программа с пользовательским интерфейсом, с помощью которой можно запускать приложения и легко управлять пакетами conda, средами и каналами, не прибегая к командам командной строки.

Можете попробовать conda и Navigator, чтобы решить, что лучше подходит именно вам для управления пакетами и средами. Между ними даже можно переключаться — результат работы из одной программы будет виден во второй.

Выполните простые упражнения в Navigator и командной строке, чтобы решить, что подходит больше.

Первая программа на Python: Hello, Anaconda!

Используйте Anaconda Navigator для запуска приложения. Затем создайте и запустите простую программу на Python с помощью Spyder и Jupyter Notebook.

Откройте Navigator

Windows

Откройте приложение Anaconda Navigator в меню Пуск.

macOS

Откройте Launchpad и кликните по иконке Anaconda Navigator.

Linux

Запустите Python в Spyder IDE

Главный экран Navigator показывает приложения, которые можно запустить.

Если Spyder уже установлен, переходите к следующему пункту.

Закройте Spyder

В меню выберите «Spyder — Закрыть Spyder» (на macOS: «Python — Закрыть Spyder»).

Запустите Python в Jupyter Notebook

Если Jupyter Notebook уже установлен, переходите к следующему пункту.

Закройте Jupyter Notebook

Закройте Navigator

В меню выберите Anaconda Navigator — Закрыть Anaconda-Navigator

Напишите программу на Python с помощью Anaconda Prompt или терминала

Откройте Anaconda Prompt

Windows
В меню Пуск найдите и откройте Anaconda Prompt

macOS
Откройте Launchpad и кликните на окно терминала

Linux
Откройте окно терминала

Запустите Python

В Anaconda Prompt (терминале — в Linux или macOS) введите python и нажмите Enter.

>>> в начале строки значит, что Python запущен.

Напишите программу на Python

Введите print(«Hello Anaconda!») и нажмите Enter.

После нажатия программа запустится. На экран выведется «Hello Anaconda!». Вы официально начали программировать на Python!

Выйдите из Python

На Windows используйте сочетание CTRL-Z и нажмите Enter. На macOS или Linux введите exit() и нажмите Enter.

По желанию: запустите Spyder или Jupyter Notebook из командной строки.

Jupyter Notebook должен запуститься так же, как это было при использовании Anaconda Navigator. Закройте его по тому же принципу.

Появились вопросы? Задайте на Яндекс Кью

У блога есть сообщество на Кью >> Python Q 7 900 5 825 ₽/мес.

Источник

Знакомство с Anaconda: что это такое и как установить

Простое руководство по Anaconda и его установке на Ubuntu 16.04 (64-bit).

May 21, 2019 · 4 min read

Что такое Anaconda?

Перед тем, как изучать Anaconda, рассмотрим Conda.

Цитируем определение Conda с официального блога:

Conda — это менеджер пакетов с открытым кодом и система управления средой, которая работает на Windows, macOS и Linux.

Conda проста в установке, выполнении и обновлении пакетов и зависимостей. Conda легко создает, сохраняет, загружает и переключается между средами на локальном компьютере.

Возникает вопрос: почему вдруг речь зашла о Conda? Все мы знаем, что это система управления пакетами, которая используется для установки и управления пакетов приложений, написанных на Python.

Система имеет и свои ограничения. Ей можно пользоваться только для пакетов Python.

pip работает с Python и пренебрегает зависимостями из не-Python библиотек (HDF5, MKL, LLVM), в исходном коде которых отсутствует файл установщика.

Проще говоря, pip – это менеджер пакетов, который облегчает установку, обновление и удаление пакетов Python. Он работает с виртуальными средами Python.

Conda – это менеджер пакетов для любого программного обеспечения (установка, обновление, удаление). Он работает с виртуальными системными средами.

Кроме того, Conda создает виртуальную среду.

Как возникла Anaconda?

Conda написан на чистом Python, что облегчает его использование в виртуальных средах Python. Кроме того, Conda подходит для библиотек С, пакетов R, Java и т.д.

Он устанавливает двоичные системы. Инструмент conda build создает пакеты из исходного кода, а conda install выполняет установку из пакетов сборки Conda.

Conda является менеджером пакетов для Anaconda — дистрибутива Python, предоставляемого Continuum Analytics. Емкое описание Anaconda следующее:

Anaconda — это дистрибутивы Python и R. Он предоставляет все необходимое для решения задач по анализу и обработке данных (с применимостью к Python).

Anaconda — это набор бинарных систем, включающий в себя Scipy, Numpy, Pandas и их зависимости.

Scipy — это пакет статистического анализа.

Numpy — это пакет числовых вычислений.

Pandas — уровень абстракции данных для объединения и преобразования данных.

Anaconda полезна тем, что объединяет все это в единую систему.

Двоичная система Anaconda — это установщик, который собирает все пакеты с зависимостями внутри вашей системы.

Простая установка

Установка файлов иногда превращается в сущий ад. Но Anaconda куда проще, чем кажется. Я предпочитаю Ubuntu, поскольку здесь установка зависит от выполнения пары команд и хорошего сетевого подключения. Поэтому все становится еще проще. Вот дальнейшие шаги для установки Anaconda.

Читайте также:  Если разрубить змею она срастется

(Данный процесс подойдет только для 64-битных компьютеров).

Шаг 1: скачивание bash-скрипта Anaconda

Скачать последнюю версию bash-скрипта установщика Anaconda можно с официального сайта. Это можно сделать через выполнение команды curl. Если в вашей системе не установлен curl, то скачайте его через следующую команду.

Перейдите в папку /tmp.

После установки curl выполните следующую команду:

Размер файла — порядка 500 МБ, поэтому установка обычно занимает несколько минут. Пожалуйста, дождитесь полного скачивания файла.

Этот скриншот был сделан после скачивания скрипта. Убедитесь в стабильности сетевого подключения. В противном случае могут возникнуть ошибки при скачивании.

Шаг 2: проверка целостности

Для проверки целостности данных установщика воспользуемся криптографическим алгоритмом хеширования под названием SHA-2 (алгоритм безопасного хеширования).

Контрольная сумма генерируется следующей строкой после выполнения команды.

Шаг 3: запуск bash-скрипта

Мы почти закончили. Пакет загрузился. Теперь осталось запустить скрипт через нужную команду.

Шаг 4: установка криптографических библиотек

Это часть предыдущего процесса. Установщик спрашивает у пользователя, хочет ли он установить все криптографические библиотеки. Введите yes и можете продолжать. Ориентируйтесь по скриншоту ниже – вы увидите примерно ту же информацию.

Шаг 5: подтверждение папки

Последним и итоговым шагом является подтверждение папки, куда будут выгружаться все пакеты Anaconda. Укажите путь, нажмите Enter и готово! Anaconda начнет творить чудеса, устанавливая все, что вам нужно!

Шаг 6: активация и проверка

Для активации установки нужно получить файл

/.bashrc через следующую команду:

Вы увидите данные по всем пакетам, доступным с установкой Anaconda.

Источник

Python 3 | Data Science | Нейронные сети | AI — Искусственный Интеллект

Библиотеки обработки данных. Примеры. Строки, списки, файлы, числа, массивы. Язык программирования Python 3 — скачать

Инструкция по Anaconda & Conda. Как управлять и настроить среду для Python?

от Шамаев Иван

Среды Conda помогает управлять зависимостями и изолировать проекты. Также среды conda не зависят от языка, т.е. они поддерживают языки, отличные от Python.

В этом руководстве мы рассмотрим основы создания и управления средами Conda для Python

Conda vs. Pip vs. Venv — в чем разница?

venv создает изолированные среды только для разработки на Python, а conda может создавать изолированные среды для любого поддерживаемого языка программирования.

Примите во внимание, что pip устанавливает только пакеты Python из PyPI, с помощью conda можно

Что такое Anaconda? Обо всем по порядку…

Anaconda — это дистрибутивы Python и R. Он предоставляет все необходимое для решения задач по анализу и обработке данных (с применимостью к Python).

Anaconda — это набор бинарных систем, включающий в себя Scipy, Numpy, Pandas и их зависимости.

Что такое Анаконда Навигатор?

Anaconda Navigator — это графический интерфейс пользователя на рабочем столе (GUI), включенный в дистрибутив Anaconda, который позволяет запускать приложения и легко управлять пакетами, средами и каналами conda без использования команд командной строки. Навигатор может искать пакеты в Anaconda Cloud или в локальном репозитории Anaconda. Он доступен для Windows, MacOS и Linux.

Зачем использовать Навигатор?

Для запуска многие научные пакеты зависят от конкретных версий других пакетов. Исследователи данных часто используют несколько версий множества пакетов и используют несколько сред для разделения этих разных версий.

Программа командной строки conda является одновременно менеджером пакетов и менеджером среды. Это помогает специалистам по данным гарантировать, что каждая версия каждого пакета имеет все необходимые зависимости и работает правильно.

Navigator — это простой и удобный способ работы с пакетами и средами без необходимости вводить команды conda в окне терминала. Вы можете использовать его, чтобы найти нужные вам пакеты, установить их в среде, запустить пакеты и обновить их — все в Navigator.

Почему Вам могут потребоваться несколько сред Python?

Когда Вы начинаете изучать Python, Вы устанавливаете самую новую версию Python с последними версиями библиотек (пакетов), которые Вам нужны или с которыми Вы хотите поэкспериментировать.

Когда Вы постигните азы Python и загрузите приложения Python из GitHub, Kaggle или других источников. Этим приложениям могут потребоваться другие версии библиотек (пакетов) Python, чем те, которые Вы в настоящее время используете (прошлые версии пакетов или прошлые версии Python).

В этом случае Вам необходимо настроить различные среды.

Помимо этой ситуации, есть и другие варианты использования, когда могут оказаться полезными дополнительные среды:

Каналы — это места хранилищ, где Conda ищет пакеты. Каналы существуют в иерархическом порядке. Канал с наивысшим приоритетом является первым, который проверяет Conda в поисках пакета, который вы просили. Вы можете изменить этот порядок, а также добавить к нему каналы (и установить их приоритет).

Рекомендуется добавлять канал в список каналов как элемент с самым низким приоритетом. Таким образом, вы можете включить «специальные» пакеты, которые не являются частью тех, которые установлены по умолчанию (каналы

Continuum). В результате вы получите все пакеты по умолчанию — без риска перезаписи их по каналу с более низким приоритетом — И тот «специальный», который вам нужен.

Создание новой среды в Anaconda Navigator

Для создания новой среды, нажимаем пункт Environments, а затем Create:

Читайте также:  Змея пружинка из бумаги

Далее указываем наименование среды и выбираем версию Python:

Добавление нового канала в Anaconda Навигаторе

Как начать работу в новой среде Conda?

Итак, Вы создали среду, указали дополнительные каналы, установили необходимые пакеты (библиотеки). Теперь необходимо в Анаконда Навигаторе перейти на вкладку Home и инсталлировать в определенную среду те компоненты, которые Вы хотите использовать.

Например, последовательно установим 2 компонента Jupyter Notepad и Spyder. Для компонентов также имеются каналы, откуда скачиваются для инсталляции ПО.

После инсталляции станут доступны кнопки Launch — Запустить компонент для работы в среде.

Запустим для примера Spyder:

Настройка среды для Spyder

1. Настройка интерпретатора

Настройка директории

Как открыть Jupyter Notebook в новой среде MyNewEnvironmentName

Для того, чтобы запустить Jupyter Notebook в созданной среде MyNewEnvironmentName, в пуске находим Anaconda3 и запускаем блокнот с названием среды:

Появится консольное окошко — это движок Jupyter Notebook, который работает в фоновом режиме:

В Jupyter запускаем Python 3:

Для того, чтобы убедиться в какой среде мы работаем, можно вбить ряд команд (ниже приведен текст этих команд для Python 3):

Узнать среду, в которой работает Jupyter Notebook:

Получить список модулей, доступных в Env:

Anaconda3 Prompt cmd Conda Command — Запуск команд через консоль

Для того, чтобы использовать команды conda через командную строку (cmd), необходимо запустить программу Anaconda Prompt (Anaconda3)

Можете набрать две команды (в качестве проверки работы conda):

Установка новой библиотеки (пакета) в среду

Пакеты управляются отдельно для каждой среды. Изменения, которые вы вносите в пакеты, применяются только к активной среде.

Исполняемые файлы в среде Conda

Видео по Anaconda Youtube

Использование Anaconda с Doker

Anaconda со своей изолированной средой для пакетов Data Science Python и технологией контейнеров Docker создает отличную комбинацию для масштабируемых, воспроизводимых и переносимых развертываний данных.

Вы можете использовать Anaconda с Docker для создания контейнеров и обмена вашими приложениями для обработки данных внутри вашей команды. Совместные рабочие процессы по обработке данных с Anaconda и Docker максимально упрощают переход от разработки к развертыванию.

Jupyter Notebook: цифровая лабораторная тетрадь

Для обеспечения воспроизводимости исследований необходимо регистрировать все, что вы делаете. Это достаточно обременительно, особенно если вы просто хотите просто поэкспериментировать и выполнить специальный анализ.

Отличный инструмент для экспериментов — Jupyter Notebook. Интерактивный интерфейс программирования позволяет мгновенно проверять действия, выполняемые кодом, благодаря чему можно создавать алгоритмы шаг за шагом. Более того, вы можете использовать ячейки Markdown для записи своих идей и выводов одновременно с кодом.

Conda

Управление пакетами, зависимостями и средой для любого языка — Python, R, Ruby, Lua, Scala, Java, JavaScript, C / C ++, FORTRAN и других.

Conda — это система управления пакетами с открытым исходным кодом и система управления средой, работающая в Windows, macOS и Linux. Conda быстро устанавливает, запускает и обновляет пакеты и их зависимости. Conda легко создает, сохраняет, загружает и переключается между средами на вашем локальном компьютере. Он был создан для программ Python, но он может упаковывать и распространять программное обеспечение для любого языка.

Conda как менеджер пакетов поможет вам найти и установить пакеты. Если вам нужен пакет, для которого требуется другая версия Python, вам не нужно переключаться на другой менеджер среды, потому что conda также является менеджером среды. С помощью всего лишь нескольких команд вы можете настроить совершенно отдельную среду для запуска этой другой версии Python, продолжая при этом запускать вашу обычную версию Python в обычной среде.

В конфигурации по умолчанию conda может устанавливать и управлять тысячами пакетов на repo.anaconda.com, которые создаются, проверяются и поддерживаются Anaconda.

Conda может быть объединена с системами непрерывной интеграции, такими как Travis CI и AppVeyor, чтобы обеспечить частое автоматическое тестирование вашего кода.

Пакет conda и менеджер среды включены во все версии Anaconda и Miniconda.

Команды Conda

Управление Conda и Anaconda

Убедитесь, что conda установлена, проверьте версию #

Обновление пакета conda и менеджера среды

Обновите метапакет анаконды (anaconda)

Управление средами — Managing Environments

Получить список всех моих окружений. Активная среда показана с *

Создать среду и установить программу (ы)

Активируйте новую среду, чтобы использовать ее

Дезактивировать окружающую среду

Создайте новую среду, укажите версию Python

Сделать точную копию окружения

Сохранить текущую среду в файл

Загрузить среду из файла

Управление Python

Проверьте версии Python, доступные для установки

Установите другую версию Python в новой среде

Добавьте новое значение в каналы, чтобы conda искала пакеты в этом месте

Управление пакетами (Packages), включая Python

Просмотр списка пакетов и версий, установленных в активной среде

Найдите пакет, чтобы узнать, доступен ли он для установки conda.

Установите новый пакет. ПРИМЕЧАНИЕ. Если вы не укажете имя среды, оно будет установлено в текущей активной среде.

Обновить пакет в текущей среде

Поиск пакета в определенном месте (канал pandas на Anaconda.org)

Установить пакет из определенного канала

Найдите пакет, чтобы узнать, доступен ли он в репозитории Anaconda.

Установить коммерческие пакеты Continuum

Создайте пакет Conda из пакета Python Index Index (PyPi)

Удаление Пакетов (Packages) или Сред (Environments)

Удалить один пакет из любой именованной среды

Источник

Интересные факты и лайфхаки
Adblock
detector